uni.aktuell-Archiv
Eine heiße Alternative zum elektrischen Strom
Fakultät für Physik der Universität Bielefeld erweitert Mitarbeit in bundesweitem Programm der Deutschen Forschungsgemeinschaft
Die
Fakultät für Physik der Universität Bielefeld ist künftig an vier statt
drei Projekten des Schwerpunktprogramms „Spin Caloric Transport“
(SpinCaT) der Deutschen Forschungsgemeinschaft beteiligt. Die
Wissenschaftler der Universität Bielefeld arbeiten an den physikalischen
Grundlagen, um magnetische Signale mit Wärme zu erzeugen. Langfristig
könnten auf der Basis zum Beispiel energiesparende Computer entwickelt
werden. 2011 startete das Schwerpunktprogramm SpinCaT, das jetzt in die
zweite Förderungsphase geht. Die SpinCaT-Forschung in Bielefeld wird mit
insgesamt 800.000 Euro gefördert. Angesiedelt ist sie am „Center for
Spinelectronic Materials and Devices“ (CSMD, Zentrum für
Spinelektronische Materialien und Geräte).
Neuerdings kann der Transport dieser Elektronenspins gezielt mit Wärme ausgelöst werden. „Wärme fällt oft als Abfallprodukt an – zum Beispiel als Betriebsabwärme im Computer“, sagt Professor Dr. Günter Reiss. „Wir wollen Verfahren entwickeln, die Wärme nutzen, um Elektronenspins gezielt zu steuern“. Reiss leitet die Arbeitsgruppe „Dünne Schichten und Physik der Nanostrukturen“ im CSMD, die in vier von insgesamt rund 30 Projekten des Schwerpunktprogramms „SpinCaT“ forscht.
Moderne Elektronik basiert auf Elektronentransport, der durch elektrische Spannung erzeugt wird. Beim elektrischen Strom bewegen sich die Elektronen also durch einen elektrischen Leiter, etwa einen Kupferdraht. Die Bielefelder Physiker wollen aber den Elektronenspin verwenden und nicht den Transport der Elektronen selber, um neuartige Schaltungen zu bauen, die vielleicht sogar durch Wärme betrieben werden können. Der Transport von Elektronenspins geschieht, ohne dass die Elektronen sich selber bewegen. Nur der Eigendrehimpuls wird von Elektron zu Elektron weitergegeben. Da also kein elektrischer Strom für so einen „Spinstrom“ nötig ist, können diese magnetischen Signale auch in Material erzeugt und weitergegeben werden, das keinen oder nur wenig elektrischen Strom leiten kann. „So entsteht ein reiner Spinstrom, bei dem Elektronenspins ohne elektrischen Strom übermittelt werden können“, sagt Reiss. Die Physiker nutzen dafür magnetische Isolatoren. Zu ihnen gehören zum Beispiel ultradünne Schichten, die aus Nickelferrit oder Eisengranat bestehen.
Die Wissenschaftler der Universität Bielefeld konzentrieren sich auf die Grundlagenforschung zur Erzeugung und Manipulation von Spinströmen mit Wärme. Dafür entwickeln sie extrem dünne Schichten, die sie als magnetische Isolatoren einsetzen. Diese Nanoschichten analysieren sie mit einem Synchrotron, einer besonderen Art von Teilchenbeschleuniger. Dafür besuchen sie Forschungseinrichtungen in Hamburg, Berlin, Grenoble (Frankreich) und Berkeley (USA). Für die Forschung in den SpinCaT-Projekten kooperieren sie zudem mit Arbeitsgruppen aus München, Regensburg, Braunschweig, Greifswald, Alabama (USA) und Sendai (Japan). Auf Einladung der Fakultät für Physik diskutierten Anfang Oktober rund 20 Physiker aus vier Ländern auf einer Tagung in der Universität Bielefeld über ihre Messungen und Analysen zu thermisch generierten Spinströmen.
Weitere Informationen im Internet:
www.spincat.info