Pressemitteilungen
Mit KI-Verfahren Ausbruch der Erbkrankheit ALS vorhersagen (Nr. 019/2023)
Bioinformatik-Forschende veröffentlichen Studie in Nature Machine Intelligence
Die amyotrophe Lateralsklerose (ALS) – eine schwere Erkrankung des motorischen Nervensystems – ist erblich bedingt, jedoch war ein Großteil der Erblichkeit bisher ungeklärt. Mit Methoden der Künstlichen Intelligenz (KI) gelang es Forschenden um Professor Dr. Alexander Schönhuth von der Technischen Fakultät der Universität Bielefeld, die Genotypprofile von 3.000 ALS-Patient*innen zu erfassen, aufzuschlüsseln und damit mehr über die Entstehung von ALS zu erfahren. Das neue Verfahren ermöglicht es, mit 87-prozentiger Genauigkeit zu prognostizieren, ob Personen an ALS erkranken oder nicht. Die Forschenden stellen ihre Studienergebnisse in der Fachzeitschrift Nature Machine Intelligence vor.
Die genetische Architektur von ALS ist kompliziert
„Bei vielen Erkrankungen, die erblich bedingt sind, gibt es überlappende, sogenannte additive Effekte von genetischen Faktoren – zum Beispiel bei Schizophrenie,“, erläutert Schönhuth. „Je mehr dieser Faktoren die Gene aufweisen, um so wahrscheinlicher ist es, dass Personen an Schizophrenie erkranken. Wir können demnach anhand der Gene die genetische Disposition gut erkennen. Bei ALS hingegen ist es viel komplizierter.“ Schönhuth und sein Team nehmen an, dass einzelne Faktoren alleine mit hoher Wahrscheinlichkeit zu ALS führen. Treten diese Faktoren aber gemeinsam auf, ist das Gegenteil der Fall: Es kommt zu keiner Erkrankung. Diese Annahme würde erklären, warum ALS in weiten Teilen unverstanden geblieben ist.
Mehr als 900 Gene gefunden, die bei Entstehung von ALS eine Rolle spielen
Die Ergebnisse der Wissenschaftler*innen zeigen eine 87-prozentige Genauigkeit im Hinblick auf die Prognose, ob Personen an ALS erkranken oder nicht. „Unser Verfahren kann Vorhersagen bezüglich der Erkrankung treffen. Sie ist viel genauer als andere Methoden. Wir haben mehr als 900 Gene gefunden, die eine Rolle bei der Identifizierung der Erkrankung spielen und 644 Gene, die in komplexen Verbindungen interagieren. Diese Zusammenhänge gilt es in anderen Forschungsgebieten weiter zu untersuchen“, führt Schönhuth aus. „Jedes Gen ist in unterschiedlichen biologischen Prozessen eingebunden. Erfahren wir mehr über die Gene, erfahren wir auch mehr über die Prozesse. So tragen unsere Ergebnisse dazu bei, dass von ALS betroffene Menschen ihren Lebensstil anpassen können, um das Risiko für die Erkrankung zu reduzieren. Zudem könnten auch Medikamente entwickelt werden, die bestimmte Prozesse beeinflussen“, erklärt Schönhuth.
- dem internationalen Forschungsnetzwerk „Algorithms for Pangenome Computational Analysis“ (Algorithmen für Berechnungsanalysen des Pangenoms, Kurzname: Alpaca). Die Europäische Union fördert das Netzwerk seit 2020, koordiniert wird es von der Universität Bielefeld.
- dem internationalen Forschungsprojekt „Pangenome Graph Algorithms and Data Integration“ (Graph-Algorithmen und Datenintegration für Pangenomik, Kurzname: Pangaia). Die Europäische Union fördert das Projekt ebenfalls seit 2020, koordiniert wird es von der Universität Mailand (Italien).
E-Mail: aschoen@cebitec.uni-bielefeld.de
Das Bildmaterial ist hier abrufbar